SN	Course Category	Course Code	Name of Course	BoS	Sche	Teaching Scheme (hrs.)		Total	Examination Scheme						
									Theory			Practical			
					(Th)	TU	P		Exam Hrs.	SEE	CIE	Min.	SEE	CIE	Min.
1	PCC-II	BCV3T09	Strength of Materials	Civil	3	-	-	3	3	70	30	45	-	-	-
2	PCC-II	BCV3P09	Strength of Materials Lab	Civil	-	-	2	1	-	-	-	-		50	25
3	PCC-III	BCV3T10	Concrete Technology	Civil	3	-	-	3	3	70	30	45	-	-	-
4	PCC-III	BCV3P10	Concrete Technology Lab	Civil	-	-	2	1		-	_	-	25	25	25
5	MDM-I	BMD3T11	Computer Programming by Python	Civil	2	-	-	2	3	70	30	45	-	-	-
6	OE-I	BOE3T01	Open Elective – I Refer OE Basket	Civil	3	-	-	3	3	70	30	45		-	-
7	OE-I	BOE3P01	Open Elective – I Lab Refer OE Basket	Civil	-	-	2	1	-	-	-	-	25	25	25
8	HSSM-I	ВНМ3Т01	Entrepreneurship in Civil Engineering	Civil	2	-	-	2	3	70	30	45	-	-	-
9	VEC-I	BVE3T01	Constitution of India	ASH	2	-	-	2	3	70	30	45	-	-	-
10	CEP	BCE3P01	Community Project/Mini Project	Civil	-	-	4	2	-	-	-	-	50	50	50
		7.7	Total		15	-	10	20		420	180		100	150	

B.Tech. Sem - III (Civil Engineering-Major)

Norange Alde and with Milling Bade sof Abulas

- frette

Sem: III	Total Hours Distribution per week					
Total Credit : 3	Lecture (L): 3 Hrs	Lecture (L): 3 Hrs Tutorial/Activity (T/A)				
Subject Code	BCV3T09	Strength of Materials				
	Examina	ation Scheme				
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
30 Marks	70 Marks	45 Marks	3 Hours			

Course Objectives:

Ase

1.	To determine the various mechanical properties of the materials.
2.	To determine the shear force and bending moment at a section for different condition.
3.	To facilitate the concept of bending and its theoretical analysis in a beam to determine the bending and shear stress in a given beam.
4.	To develop slope and deflection equations for beams subjected to various loads.
5.	To determine the torsion in circular section, direct and bending stresses.

	Course Outcomes
A	iter completion of syllabus, students would be able to
1	Explain the basic concept and mechanical properties of materials.
2	Calculate and draw Shear Force diagram and Bending Moment diagram and their relation.
3	Formulate the bending and shear stresses equations and able to draw bending and shear stress diagram.
4	Formulate slope and deflection equations for beams subjected to various loads by macaulay's method.
5	Analyze and evaluate the torsion in circular section, direct and bending stresses.

SYLLABUS

Details of Topic	Allotm of hou	and the second second	Mapped with CO Number	
UNIT I: STRESS AND STRAIN	L	T		
Concept of stress and strain, stress strain diagrams and their characteristics for mild steel and TOR steel, stresses and strains in simple, compound and composite bars in uniaxial tension and compression, temperature stresses in simple restrained composite bar, elastic constants and relation between them.	7		01	
Chade out that sonarrage	<u>Alli</u>	At	F	3 Julys

UNIT II: SHEAR FORCE AND BENDING MOMENT		
Types of beams, axial force, shear force and bending moment, relation between load intensity, Shear Force and Bending Moment, Shear Force and Bending Moment diagrams of simply supported and cantilever beams.	7	02
UNIT III: STRESS IN BEAMS		
Bending stresses in beams, assumptions and derivation of simple bending theory, relation between bending moment, bending stress and curvature of homogeneous and composite beams, shear stresses in simple beams, shear flow and shear stress distribution, shear stress in composite beams, combined effect of bending moment and axial force, introduction to principal stresses, maximum shear stresses.		03
UNIT IV: DEFLECTION OF BEAMS		
Differential equations of the deflection curve, bending of uniformly loaded beams, deflection of simply supported beams loaded concentrated beam, introduction to Macauley's method, deflection of a simply supported and cantilever beam by the Macauley's method, method of superposition, the deflection of beams with overhangs.	6	04
UNIT V: TORSION, DIRECT AND BENDING STRESS		
Direct and bending stress, introduction to torsional rigidity, assumptions and derivation of relations between torsional moment, shear stress and angle of twist, torsion in thin-walled hollow section, closely coiled helical springs.	6	05

List of Books:

Text Books:

- 1. Strength of materials, S. Ramamrutham, 17, Dhanpat Rai Publication
- 2. Strength of materials, R. S. Khurmi, S. Chand Publication
- 3. Strength of materials, Subramanian R., CBS Publishers and Distributors.

Reference Books:

- 1. Strength of Materials, F. L. Singer, Haper and Row.
- 2. Strength of material, R. K. Bansal, Laxmi Publication.

aten of materia

KID

Allan -

Sem: III	Total Ho	urs Distribution per weel	ζ.		
Total Credit :1		Practical (P): 2 Hrs.			
Subject Code	BCV3P09 Strength of Materials Lab				
	Examinati	on Scheme – Practical			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:		
50 Marks		25 Marks	n Andrewski (<mark>22</mark> Nasili I		

List of Experiments:

1) The practical are based on theory subject of Strength of Materials and CO's.

2) Minimum eight practical shall be performed from list of experiments.

3) Any one practical may be performed using virtual lab.

Exp. No.	List of Experiments	
1	To study the universal testing machine.	
2	To determine the tensile strength of steel specimen.	
3	To determine flexural strength of timber beam.	
4	To determine modulus of rigidity of m.s. bar by torsion test.	
5	To determine impact value of metal by Charpy impact test or Izod impact test.	
6	To determine Rockwell hardness number for m.s. And aluminium bar.	
7	To determine the stiffness of spring and modulus of rigidity.	
8	To determine the compressive strength of specimen.	
9	To perform shear test on different metals.	
10 To perform bending test on wooden beam and find its flexural rigidity.		
11	To study various types of strain gauge apparatus.	
12	To study standard torsion test on metals.	
Le ch	Bade any time Alde sterrange for get	
- pida		

Sem: III	Total Hours Distribution per week					
Total Credit : 3	Lecture (L): 3 Hrs Tutor		al/Activity (T/A): 0 Hr.			
Subject Code BCV3T10 Concrete Technology						
	Examina	tion Scheme				
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
30 Marks	70 Marks	45 Marks	3 Hours			

Course Objectives:

and who who

1.	Analyze the properties and behavior of concrete constituents including cement, aggregates, and water, and their significance in determining the properties of concrete.
2.	Design and proportion concrete mixes using various methods (IS, BS, and ACI) to produce concrete mixes that meet specific requirements, taking into account factors such as strength, workability, and durability.
3.	Evaluate the properties and performance of fresh and hardened concrete including assessment of workability, strength, durability, and identification of factors that affect its performance, such as environmental conditions, admixtures, and additives

	Course Outcomes					
Afte	er completion of syllabus, students would be able to					
1	Explain the properties of the constituent materials of concrete.					
2	Examine the properties of fresh concrete and tests to determine these properties.					
3	Examine the properties of hardened concrete and tests to determine these properties.					
4	Analyse the concrete mix design and apply statistical quality control techniques.					
5	Explain admixtures, their role in concrete properties.					

SYLLABUS

L. Martin		Mapped with CO Number
L	Т	
8		01
	of h	8

Bade NDhan

Aggregates: Coarse and fine aggregate, normal, light and heavy weight aggregates. Aggregate characteristics and their significance in properties of concrete. Sampling, Particle shape and texture, Bond of aggregate, size & grading of aggregate, strength of aggregate. Mechanical properties and tests, Bulking of sand, Crushed sand, Alkali aggregate reaction.		
Water: Minimum requirement of water for mixing. UNIT II: FRESH CONCRETE		
Batching, Mechanical mixers, automatic batching and mixing plants.	-	
Efficiency of mixing, Workability and its Measurement, Factor affecting workability, Significance of w/c ratio, cohesiveness of concrete, segregation, bleeding, voids, permeability, Conveyance of concrete, placing of concrete, compaction, curing of concrete, significance and methods, temperature effects on curing and strength gain, Maturity of concrete, Formwork for concrete. Hot and cold weather concreting, Introduction to Ready mix, pumped and self-compacting concrete.	7	02
UNIT III: STRENGTH OF CONCRETRE		1
Strength gain, factors affecting compressive strength, Tensile and flexural strengths, relation between compressive and tensile strength. Failure modes in concrete, cracking in compression. Impact strength, fatigue strength, shear, elasticity, Poisson's ratio. Testing of Hardened Concrete: Compression test, cube strength and cylinder strength and their relation, effect of aspect ratio on strength. Flexural strength of concrete, determination of tensile strength, indirect tension test, splitting test, accelerated curing test. Non Destructive Test: Significance, rebound hammer, ultra-sonic pulse velocity test.	7	03
UNIT IV: Mix Design		
Objectives of mix design, Process, statistical relation between mean and characteristic strength, variance, standard deviation, factors affecting mix properties, grading of aggregates, water/cement ratio etc. Degree of quality control, design of mix by IS method, introduction to road Note No. 4 (BS) and ACI method.	7	04
UNIT V: Additives and Admixtures		
Types of admixtures, natural products, diatomaceous earth, calcined clays of shales, volcanic glasses, by-products-pozzolana, fly ash, silica fume, rice husk ash, metakaolin, G.G. blast furnace slag, admixtures- air entraining, water reducing, accelerators, retarders, plasticizers and superplasticizers, permeability reducing, grouting agents, surface hardeners. Shrinkage : Early volume changes, drying shrinkage, mechanism and factors affecting shrinkage, influence of curing conditions, differential shrinkage, carbonation, creep- factors influencing, relation between creep and time, nature of creep, effect of creep.	7	05

Text Books:

 Gambhir M.L: Concrete Technology Tata McGraw Hill (Second Edition) 1995.Structural
 M.S. Shetty, Concrete Technology S. Chand & Company New Delhi 2005. Bade NICha

and with -**Reference Book:**

- 1. P. Kumar Mehata, Paulo & J.M. Monteiro, Concrete microstructure, properties & materials, Prentice Hall INC & Mcgraw Hill USA.
- 2. Short & Kenniburg, Light Weight Concrete, Asia Publishing House, Bombay 1963.
- 3. Chen Orchard D.F.; Concrete Technology-Vol I. & II Applied Science Publishers (Fourth Edition) 1979
- 4. Neville A.M., J.J. Brook Properties of Concrete Addison Wesley 1999.

blade Nonaunge Johntes forthe forthe

Sem: III	Total Hours Distribution per week		
Total Credit :1	Practical (P): 2 Hrs.		
Subject Code	BCV3P10	Concrete Technology Lab	
14 四极端的11	Examinati	on Scheme – Practical	and the second
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
25 Marks	25 Marks	25 Marks	

List of Experiments:

1) The practical are based on theory subject of Concrete technology and CO's.

2) Minimum eight practical shall be performed from list of experiments.

3) Any one practical may be performed using virtual lab.

Exp.	List of Experiments
No.	
1	To determine the normal consistency and initial setting time and final setting time by
	Vicat's apparatus.
2	To determine the fineness of cement.
3	To perform soundness test of cement.
4	To determine fineness modulus for coarse and fine aggregates.
5	To determine the bulking of sand.
6	To determine the compressive strength of cement.
7	To design the concrete mix of required characteristic strength according to I.S. method.
8	To determine the workability of concrete by slump cone, Vee bee apparatus, compaction
	factor and flow test.
9	To prepare and test the concrete cubes for compressive strength by Indian standard
	method.
10	Study and performance of various Non-Destructive testing methods (NDT) in concrete
	technology
11	To determine workability of cement mortar.
12	To determine the permeable voids of concrete
13	To determine the permeability of mortar.
A	the one that beade someringe the

Aller .

Sem: III	Т	otal Hours Distribution	n per week
Total Credit : 2	Lecture (L): 2 Hrs	and the second se	Activity (T/A): 0 Hr.
Subject Code	BMD3T11	Computer Programming by Python	
	Exai	mination Scheme	ogramming by Tython
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
30 Marks	70 Marks	45 Marks	3 Hours

Course Objectives

- To learn python basic operations and data structures 1 To build applications using python and its libraries 2

Course	Outcomes
--------	----------

After completion of syllabus, students would be able to Understand and practice python environment and basics of python 1

- Write program based on control structures and various data structures 2 3
 - Write modular programs using functions and modules
- Use files as input and output data to programs and graphics 4

SYLLABUS

Details of Topic		lotment of Hours	Mapped with CO Number
Unit 1: Introduction D. (The second	L	T/A	CO
Unit 1: Introduction, Data Types and Operators			
Installation and working with Python, Variables and data types in pyth Perform computations and create logical statements using Python's operated Arithmetic Assignment Comparison			
operators, list, tuple and string operations	vise		1
Unit 2: Python Decision making and Loops			
while conditional statements using If statement, ifelse statement, statement and Boolean expressions, While loop, For loop, Nested Lo Infinite loop, Break statement, Continue statement, Pass statement, Use and while loops along with useful built-in functions to iterate over a manipulate lists, sets, and dictionaries. Plotting data, Programs using decisi making and loops.	op, for		2
Unit 3: Python Functions and Modules			
Defining custom functions, Organising Python codes using functions, Creat and reference variables using the appropriate scope, Basic skills for working	ate 6 ng		3
state at month the	de r	sphan	nge fl

with lists, tuples, work with dates and times, get started with dictionaries,		
Importing own module as well as external modules, Programming using functions, modules and external packages		
Unit 4: File Operations & Graphics		and and and
An introduction to file I/O, use text files, use CSV files, use binary files,	6	4
Introduction to matplotlib.pyplot, plotting text, values, lines, markers, axes, circles,		
polygones, arrows.		

Text/Reference Books:

- John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India
- 2) Python Programming Fundamentals- A Beginner's Handbook by Nischay kumar Hegde
- 3) Kenneth A. Lambert, "Fundamentals of Python First Programs", CENGAGE Publication
- 4) Introduction to Python for Engineers and Scientists, By. Sandeep Nagar, Apress
- 5) MicroPython for the Internet of Things (A Beginner's guide to programming with Python on microcontrollers) By. Charles Bell, Apress
- 6) Python for Civil and Structural Engineers: Vittorio Lora, Independently published, 2019.
- 7) Python Programming Using Problem Solving Approach: Reema Thareja, Oxford University, Press; First edition.
- 8) Learning Python: Powerful object-oriented programming, Mark Lutz, O'REILLY publications 5th addition.
- 9) Introduction to Computing & Problem Solving with Python Jeeva Jose and P Sojan Lal Ascher.
- 10) Problem Solving with Algorithms and Data Structures using Python by Brad Miller and David Ranum, 2nd addition.
- 11) Allen Downey, Jeffrey Elkner, Chris Meyers, Learning with Python, Dreamtech Press
- 12) David M. Baezly "Python Cookbook" O'Reilly Media; Third edition, 2013.

Online Learning Platform

- 1. Swayam: Programming in Python https://onlinecourses.swayam2.ac.in/cec23_cs14/preview
- 2. Coursera: Programming for Everybody (Getting Started with Python) https://www.coursera.org/learn/python?specialization=python
- 3. edX: The University of Michigan: Programming for Everybody (Getting Started with Python)

laade

Sem: III	Т	otal Hours Distribution	1 per week
Total Credit : 3	Lecture (L): 3 Hrs	Tutorial/Activity (T/A): 0 Hr. Open Elective - I	
Subject Code	BOE3T01		
	Exar	nination Scheme	
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
30 Marks	70 Marks	45 Marks	3 Hours

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B.TECH. CIVIL ENGINEERING

Sem: III	Total Ho	Total Hours Distribution per week		
Total Credit :1		Practical (P): 2 Hrs.		
Subject Code	BOE3P01	Open Elective - I Lab		
AU interfes	Examinati	on Scheme – Practical		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:	
25 Marks	25 Marks	25 Marks	Duration.	

NOTE: For BOE3T01and BOE3P01, refer OE Basket other than OE offered by Civil Engg Board

Att

Sem: III	Total Hours Distribution per week		
Total Credit : 2	Lecture (L): 2 Hrs	Tutorial/Activity (T/A): 0 Hr.	
Subject Code	BHM3T01	Entrepreneurship in Civil Engineering	
	Exar	nination Scheme	······································
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
30 Marks	70 Marks	45 Marks	3 Hours

	Course Objectives
1	To learn concepts of entrepreneurship and startups
2	To explore funding and leanings from case studies.

	Course Outcomes	
After	completion of syllabus, students would be able to	
1	Understand a know-how on entrepreneurship development	
2	Acquire the knowledge of various types of startups	- Contraction and the second second
3	Understand the concept of ideation	
4	Apply knowledge for the funding for startups	

SYLLABUS

Details of Topic	Allotment of Hours		Mapped with CO Number
	L	T/A	CO
Unit 1: Introduction to Entrepreneurship			
Concept of entrepreneurship, characteristics of an Entrepreneur, types of Entrepreneurship, Functions of Entrepreneurs, Women entrepreneurship in India, Problems and challenges of women entrepreneurs, Government's support system to develop women entrepreneurship.	6		1
Unit 2: Basics of Startups			
Concept of startup, Types of startups: Scalable startup, small business startup, lifestyle startup, buyable startup, social startup, big business startup, Startup ecosystem	6		2
Unit 3: Ideations	100		
Concept of ideation, ideation process, idea incubation, design thinking approach, ideation techniques (brainstorming, sketching, SCAMPER, and prototyping), success factors for ideation.	6		3
And and Mall Bade 15	Dr	ange	- Alle

Unit 4: Funding	
Funding for startups, angel funding, venture funding, difference between angel and venture funding, private equity fund, ownership of startups, causes of startups failures, Startup success case studies: Instagram, Linkedin, Snapchat, Whatsapp	4

Text/Reference Books:

- 1. Entrepreneurial Development By, S. S. Khanka S. Chand & Co. Ltd. New Delhi, 1999.
- 2. Entrepreneurial Development. By, S.Anil Kumar. New Age International.
- 3. Small- Scale Industries and Entrepreneurship, By, Dr. Vasant Desai, Himalaya Publication.
- 4. Industrial Economics and Entrepreneurship development by A.M. Sheikh, Nawaz Khan & M.A. Tongo, S Chand Publication

Medt- Beade NI

Sem: III	Total Hours Distribution per week			
Total Credit : 2	Lecture (L): 2 Hrs	Tutorial/Activity (T/A): 0 Hr.		
Subject Code	BVE3T01	Constitution of India		
	Exai	nination Scheme		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:	
30 Marks	70 Marks	45 Marks	3 Hours	

	Course Objectives
1	To provide engineering students with a foundational understanding of the Indian Constitution, its principles, and its relevance to their professional and civic responsibilities

(legg)	Course Outcomes	Section Providence
Afte	r completion of syllabus, students would be able to	
1	Analyze the basic structure of Indian Constitution.	
2	Remember the Fundamental rights and duties.	
3	Know DPSP's and Nation's political structure.	
4	Understand function of Parliament and Judiciary.	

SYLLABUS

)	Details of Topic		otment of lours	Mapped with CO Number
		L	T/A	CO
	Unit 1	a hire	1000	and the second second
	Introduction to the Indian Constitution, Preamble of the Indian Constitution and key concepts, Salient features of the Indian Constitution, Role and objective of Constituent Assembly.	6		1
ļ	Unit 2			
	Fundamental rights meaning, significance, restrictions and limitations Fundamental duties and its scope, difference between Fundamental rights and Fundamental duties	6		2
1	Unit 3			
	Directive Principles of State Policy (DPSP's) and its present relevance in India, Union Executive- President, Prime Minister and Union cabinet.	6		3
L	Unit 4			
L	Parliament - role and function, Lok Sabha and Rajya Sabha, Judiciary system	6	191	4
	And all the beade No	na	inge	Ability in

in India, Supreme Court of India and other courts.

John

Text/Reference Books:

- 1. Introduction to the Constitution of India by D D Basu.
- 2. Outlines of Indian Legal and Constitutional History by M P Jain.
- 3. Constitution of India by P M Bakshi

with the Att bade NDham And Att bade NDham

Sem: III	Total Hours Distribution per week		
Total Credit :2		Practical (P): 4 Hrs.	
Subject Code	BCE3P01 Community Project/Mini Project		
	Examinati	on Scheme – Practical	
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:
50 Marks	50 Marks	50 Marks	

	Course Outcomes
Af	ter completion of syllabus, students would be able to
1	To identify the specific challenges and requirements of the community/technical problem related to civil engineering by using comprehensive needs assessment
2	decision-making, and implementation processes
3	To develop capacity building, skill development, and the establishment of local resources by development of projects which focus on long-term solutions that can be sustained by the community/construction industry even after the project ends
4	the community, local organizations, NGOs, government agencies, Construction Industry and other stakeholders.
5	To ensure its effectiveness and make any necessary adjustments by using Monitoring and evaluating the project's progress and its impact on community/construction industry.

Following guidelines may be used for the Community/mini-project.

- Project allotment should be done at the end of 2^{nd} semester.
- After allotment of guide, student have to identify the problem/issue from Community/Construction Industry by comprehensive assessment of problem/issue.
- Industry person/community person experience greater than 10 years may be Co guide.
- Minium Three students and maximum six students should be in a one group.
- Throughout the 3rd semester session, two Progress seminars are expected from each group namely; Introductory Project Seminar and Project Progress Seminar.
- Before last teaching day of session, Civil Engineering Department have to conduct Exhibition/Demonstration for all groups.
- Internal Assessment as per Below table

Sr. No.	Activity	Max Marks	Total marks	Expected	Assessment
1	Introduction seminar	10	50	Title finalization	Problem & its comprehensive study, problen identification method.
2	Project Progress Seminar	10		Progress of project	1. Procedure/methedology adopted
3	Exhibition/Demo	30			 Presentation skill Knowledge of Project

nstration	
notation	4. Involvement in Project
	5. Team work

- After completion of project all students groups must submit the project report in spiral • binding as per the prescribed format.
- If any group has to present/ publish paper related to their project at National or • International.(It is an optional) But at the time of external examination, Examiner can give marks on their published work.
- After completion of project all students groups must submit the project report in spiral • binding as per the standard format.
- If any Change of Guide then department have to produce justified reasons to external • examiner.
- External Examination will be in terms of presentation/viva voce. •

- voce. MI

Sem: III	Total Hours Distribution per week				
Total Credit: 3	Lecture (L): 3 Hrs	Tutorial/Activity (T/A): 0 Hr.			
Subject Code	BOE3T01	Open Elective – I Building Construction Materials and Practices			
	Examina	ation Scheme			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:		
30 Marks	70 Marks	45 Marks	3 Hours		

	Course Objectives
1	To prepare the students to understand components of buildings and their functions.
2	To learn about various building materials and their execution.
3	To study the necessity and behavior of foundations in construction.
4	To explore innovative solutions for sustainable and eco-friendly construction.
5	To understand the composition, properties, and mix design techniques of concrete, enabling the selection and optimization of materials.

Course	Outcomes
Course	Outcomes

After completion of syllabus, students would be able to

- 1 Identify and describe the components of a building.
- 2 Differentiate and classify various building materials.
- 3 Select suitable materials for construction projects.

4 Analyze different types of foundations and structural systems.

5 Apply knowledge of concrete ingredients, properties, and mix design techniques to optimize

workability, strength, and durability.

Cade Daram

SYLLABU	S
---------	---

Details of Topic	(tment of ours	Mapped with CO Number
	L	T/A	CO
UNIT 1			
Stones- Types of Stones, Requirements of Good Building Stones, Dressing of stones, Deterioration and Preservation of Stone Work.	2		
Bricks - Classifications, Manufacturing of Clay Bricks, Requirements of Good Bricks.	2		1

Alternative bricks (fly ash bricks, AAC blocks)	1	
Lime- Classification, Properties.	1	
UNIT 2		
Doors, Windows and Ventilation- Location of Doors and Windows, Technical Terms, Material for Door and Windows	2	
Fire-resistant doors and windows	2	2
Prefabricated and modular construction techniques Advanced scaffolding systems and safety measures		
Form Work- Introduction to Formwork, Scaffolding	2	
UNIT 3		
Foundation-Introduction, Necessity of Foundation, Causes of failure of Foundations and Remedial Measures.	2	3
Soil stabilization techniques & Underpinning methods for foundation repair	2	
Types of Structure- Load Bearing Structures and Framed Structures.	2	
UNIT 4		
Wall Finishes, Plastering, Paintings, Purposes, Methods, Defects and their Solution, Glass-Types and Uses	3	4
Green building materials and finishes & Smart coatings and self-healing materials	3	
UNIT 5		
Ingredients of concrete - Cement, Aggregates, Water, and Admixtures.	3	-
Workability, strength, and durability properties of concrete. Mix design techniques – nominal mix and design mix.	3	5

Reference Books:

- 1. Building Construction by Rangwala.
- 2. Building Construction & Construction Materials by G. S. Birde& T. D. Ahuja.
- 3. Building Construction by Arun Kr. Jain Ashok Kr. Jain & B. C. Punmia.
- 4. Building Construction by Gurucharan Singh.

Mar - 45

Sem: III	Total Hours Distribution per week						
Total Credit : 1	Practical (P): 2 Hrs	Tutorial/Activity (T/A): 0 Hr.					
Subject Code	BOE3P01	Open Elective – I Building Construction Materials and Practices Lab					
	Exar	nination Scheme					
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:				
25 Marks	25 Marks	25 Marks					

List of Experiments: Any 08

- 1. Identification of Stones & Bricks Study of different types of stones and bricks used in construction.
- 2. Brick Testing Conducting tests such as water absorption, compressive strength, and efflorescence.
- 3. Lime and Cement Tests Identification of lime and its properties; consistency and setting time tests of cement.
- 4. Analysis of Doors and Windows Study of different types of doors and windows used in modern construction.
- 5. Formwork and Scaffolding Demonstration of various formwork and scaffolding systems.
- 6. Soil Bearing Capacity Test Field determination of soil bearing capacity for foundation design.
- 7. Plastering & Painting Techniques Demonstration of different plastering and painting methods, including defect analysis.
- 8. Glass Identification & Applications Study of different types of glass and their uses in construction.
- 9. Green Building Practices Case study on sustainable and eco-friendly construction materials.
- 10. Study of Earthquake tips- Understanding the design principles of earthquake-resistant buildings.

folder Johnt.

	Course				Teachiı (hrs.)	Teaching Scheme (hrs.)			Examination Scheme						
SN	Category	Course Code	Name of Course	BoS				-Total Credit					Practical		
					(Th)	TU	Р		Exam Hrs.	SEE	CIE	Min.	SEE	CIE	Min.
1	PCC-IV	BCV4T12	Structural Analysis	Civil	3	-	201	3	3	70	30	45	-	-	-
2	PCC-IV	BCV4P12	Structural Analysis Lab	Civil	-	-	2	1	-	-	122	-	-	50	25
3	PCC-V	BCV4T13	Geotechnical Engineering	Civil	3	-	-	3	3	70	30	45		-	-
4	PCC-V	BCV4P13	Geotechnical Engineering Lab	Civil	-	-	2	1	-	-		-	25	25	25
5	MDM-II	BMD4T14	Artificial Neural Networks	Civil	2	-	-	2	3	70	30	45	-	-	-
6	OE-II	BOE4T02	Open Elective – II Refer OE Basket		2	-	-	2	3	70	30	45	-	-	-
7	AEC-II	BAE4T02	Civil Engineering Report Writing	Civil	2	-	-	2	3	70	30	45	-		1.
8	HSSM-II	BHM4T02	Construction Planning And Management	Civil	2	-	-	2	3	70	30	45	-	-	-
9	VEC-II	BVE4T02	Environmental Science	Civil	2	-	-	2	3	70	30	45	-	-	-
10	VSC-II	BVS4P02	Building Design and Drawing Lab	Civil	-	- 1	4	2	-	-	-	-	50	50	50
			Total		16	- 18 - 18 s	08	20		490	210	新建	75	125	

B. Tech. Sem-IV (Civil Engineering-Major)

Exit option: Award of UG Diploma in Major and Minor with 80 Credits and an additional 8 credits in skill-based courses, internship, mini projects etc.

- Albur and with

Hillen Beade

popula

Sem: IV	Total Hours Distribution per week					
Total Credit : 3	Lecture (L): 3 Hrs	Tutorial/	Activity (T/A): 0 Hr.			
Subject Code	BCV4T12	Structural Analysis				
	Exar	nination Scheme	and the second second			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
30 Marks	70 Marks	45 Marks	3 Hours			

	Course Objectives
1	To study basic concepts of analysis of structural components.
2	To undestand structural response.
3	To study various methods of the analysis for determinate and indeterminate structure.

	Course Outcomes After completion of syllabus, students would be able to						
After							
1	Analyse the continuous beam with and without sinking of support, by Three Moment Theorem.						
2	Apply the Moment Distribution Method / Slope and deflection method to analyze indeterminate structures.						
3	Draw influence line diagrams for different structures to analyze structural behavior.						
4	Apply the Stiffness Matrix Method to analyze complex structures.						
5	Analysis the columns and Arches.						

SYLLABUS

Details of Topic	Allotment of Hours		Mapped with CO Number	
	L	T/A	CO	
Unit 1: Statically Indeterminate Structures	TREELS			
Introduction to Statically indeterminate Structures, Concept of Static	7	and the second		
indeterminacy. Analysis of Fixed and Continuous beams by Three moment			1	
theorem, effects of sinking of support.				
UNIT II: ANALYSIS OF BEAMS AND FRAMES				
Analysis of Continuous Beams and Portal frames by Slope Deflection	7			
Method. Analysis of Continuous Beams and Simple Portal frames (Sway and			2	
Non Sway) Using Moment Distribution Method.				
UNIT III: INFLUENCE LINE DIAGRAM				
Rolling loads on simply supported beams with concentrated and uniformly	7		3	
the ast and we that beade w	D	ouge	3 - RHUBLE	

distributed loads, maximum B.M. and S.F. Influence Line Diagrams for Reactions, Shear Forces and Bending Moments in simply supported beam, cantilevers and beams with overhangs, ILD for forces in members of Simple Truss.			
UNIT IV: MATRIX STIFFNESS METHOD - APPLICATION TO			
BEAMS AND PLANE FRAMES			
Basic concept, degree of freedom, direct stiffness Method. Formulation of elemental/local stiffness matrix and global stiffness matrix for beam members (without axial deformation), for plane frame members. Member load matrix due to concentrated loads, uniformly distributed loads. Transformation matrix, Assembly of global/structural load matrix up-to three elements. Solution to problems with maximum degree of freedom three. UNIT V: COLUMN AND TWO-HINGED ARCHES	6		4
Columns : Bucking of columns, Euler's and Rankine's formula,		Sec. 20	C. C. Walter
Two-Hinged Arches: Secant Formula Analysis of Two-Hinged Arches S.F. and normal thrust, parabolic arches.	6		4

List of Books:

- Structural Analysis -I, Fourth Edition, S. S. Bhavikatti, Vikas Publishing house Pvt. Ltd.
- Structural Analysis –II, Fourth Edition, S. S. Bhavikatti, Vikas Publishing house Pvt. Ltd.
- Basic Structural Analysis, Second Edition, C. S. Reddy, Mc Graw-Hill India.
- Basic Structural Analysis, Third Edition, C. S. Reddy, Mc Graw-Hill India.
- Structural Analysis A Matrix method, Second Edition, G. S. Pandit & S. P. Gupta, Mc Graw-Hill.
- Advanced Structural Analysis, Devdas Menon, Narosa Publishing House, New Delhi.
- Structural Analysis, R. C. Hibbeler, Sixth Edition, Pearson.
- Theory of Structure, R.S. Khurmi & N. Khurmi, S-Chand Publication.

Reference Book:

- Theory of Structure, S. Ramamurtham, R. Narayanan, Eleventh Edition, Dhanpat Rai Publishing Company.
- Theory and Analysis of Structures, Volume 1, O.P. Jain & B.K. Jain, Third Edition, Nem Chand Brothers.
- Theory of Structures, Timoshenko S. P. & Young D.H., International Edition, McGraw-Hill.
- Intermediate Structural Analysis, C. K. Wang, Indian Edition, McGraw-Hill.

Keade Andt

Sem: IV	Total Hours Distribution per week					
Total Credit :1		Practical (P): 2 Hrs.				
Subject Code	BCV4P12	Structural Analysis Lab				
	Examination	on Scheme – Practical				
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
50 Marks	25 Marks	25 Marks				

List of Experiments:

a) The practicals are based on theory subject of Structural Analysis and CO's.b) Minimum eight practicals shall be performed from list of experiments.

c) Any one practical may be performed using virtual lab.

Exp. No.	List of Experiments
1	Verification of Maxwell's reciprocal theorem using simply supported beam.
2	Verification of Maxwell's reciprocal theorem using simply supported truss.
3	Horizontal thrust in two hinged arch.
4	ILD for Horizontal thrust in two hinged arch.
5	Verification of flexural rigidity using simply supported beam.
6	Analysis of a continuous beam using computer software.
7	Analysis of a plane frame using computer software.
8	Study practical on strain gauge.
9	Comparison of different types of column buckling load.
10	Horizontal thrust in portal frame.
11	Introduction of different method of structural analysis.
12	To determine the deflection of two Span Continuous beam.
	And and All the Bade NDhamge Will

Sem: IV	1	fotal Hours Distributio	n per week			
Total Credit : 3	Lecture (L): 3 Hrs	Fig. 1. Sector 2. Secto				
Subject Code	BCV4T13	Tutorial/Activity (T/A): 0 Hr. Geotechnical Engineering				
	Exal	mination Scheme	anical Engineering			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
30 Marks	70 Marks	45 Marks	3 Hours			

 Imparting knowledge about index properties and their determination. Analyzing significance of permeability and seepage in soil. Understanding the concept of consolidation and its significance in soil mechanics. Evaluating the role of compaction in impact. 		Course Objectives
 Understanding the concept of consolidation and its significance in soil mechanics. Evaluating the role of compaction in improve 	1	Imparting knowledge about index properties
 Understanding the concept of consolidation and its significance in soil mechanics. Evaluating the role of compaction in improve 	2	Analyzing significance of normality hits
4 Evaluating the concept of consolidation and its significance in soil mechanics.	3	
2 variating the fole of compaction in improving soil stability 11	4	Evaluating the role of consolidation and its significance in soil mechanics
5 Estimate the compressibility and load-bearing capacity	5	Estimate the compressibility potential and analyze shear strength parameters.

	Course Outcomes
After	r completion of syllabus, students would be able to
1	Determine basic properties and index properties of soil using knowledge of engineering
2	Construct and analyze principles of new 1111
3	Explain the fundamental principles of soil consolidation and its significance in geotechnical
4	Evaluate hydraulic properties and compactive of the terms
5	Evaluate hydraulic properties and compaction of soil, identify the soil classification, Explain the significance of shear strength in soil stability and geotechnical engineering applications.

SYLLABUS

	Details of Topic		otment of lours	Mapped with CO Number				
-	Unit 1: Introduction, Physical & Index properties of soil: Introduction: Origin sand formation of a the Xi of the State of Soil:	L	T/A	CO				
	inter-relationship. Physical & Index properties of soil: Weight- Volume Relationships, Insitu Density, Moisture Content, Specific Gravity, Relative Density, Atterberg's Limits, Soil Indices, consistency of soil, Particle Size Distribution of soil: Sieving, Sedimentation Analysis, Identification & Classification of soil: Field identification of soil, Soil Classification: as per Unified Classification System		unge	1 - J. (1940)	×.	K	mp	>

IS Code Recommendation, AASHTO Classification	1	
Unit 2: Permeability and Seenage		
Flow through soil: Darcy's Law, Coefficient of permeability, laboratory and field determination of coefficient of permeability, Permeability for Stratified Deposits, Laplace's Equations, Flow nets, Flow Through Earthen Dam, Estimation of Seepage, Uplift due to seepage. Effective Stress Principles: Effective Stress, Effective pressure due to different conditions, Seepage force, Critical hydraulic gradient, Quick sand condition.	7	2
Unit 3: Consolidation		
Consolidation of soil: Introduction, types of clay deposits, initial, primary & secondary consolidation, spring analogy for primary consolidation, one dimensional consolidation test results, Terzaghi's theory of consolidation.	5	3
Unit 4: Compaction		
Compaction: Mechanism of compaction, factors affecting compaction. Standard & modified proctor Tests, field compaction equipments, quality control.	5	4
Unit 5: Shear Strength		
Shear Strength of Soil: Basic concepts, Mohr- Columb's Theory, Laboratory Determination of soil shear parameter- Direct Shear, Tri-axial Test, Unconfined Compression, Vane Shear Test, Sensitivity & thixotropy of clay.	7	5

Text/Reference Books:

- 1. Soil Mechanics & Foundation Engg, B.C.Punmia, Laxmi Publication.
- 2. Text book of Soil Mechanics & Foundation Engineering, V.N.S. Murthy, CBS Publisher's & Distributors.
- 3. Geotechnical Engineering Principles and Practice, Coduto, Pearson Education.
- 4. Soil Mechanics, Lambe & Whitman, WIE.
- 5. Basic & Applied Soil Mechanics, Gopal Ranjan & A.S.R.Rao, Willes Eastern Ltd.

- 6. Soil Mechanics & Foundation Engg, K.R. Arora, Std. Publisher.
- 7. Soil Mechanics & Foundation Engg, Modi, Std. Publisher.

Online Learning Platform

4. Swayam: Geotechnical Engineering I

https://swayamprabha.gov.in/index.php/program_data/data/12

5. Class central: Soil Mechanics

https://www.classcentral.com/subject/geotechnical-engineering

the for

Cade NIThay

Sem: IV Total Hours Distribution per week					
Total Credit : 1	Practical (P): 2 Hrs	ractical (P): 2 Hrs Tutorial/Activity (T/A): 0 Hr.			
Subject Code	BCV4P13	Geotechnical Engineering			
	Exar	nination Scheme			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:		
25 Marks	25 Marks	25 Marks			

List of Experiments : Any 8

- 1. Moisture content and Specific gravity of soil.
- 2. Grain size Analysis (Sieve Analysis).
- 3. Consistency limit, plastic limit and liquid limit of soil.
- 4. Hydrometer Analysis.
- 5. Constant Head Permeability test of or Falling Head Permeability test.
- 6. Consistency limit of soil (shrinkage limit).
- 7. Field Density by sand replacement method.
- 8. Field Density by core cutter method.
- 9. Unconfined compression test.
- 10. Direct shear Test.
- 11. Triaxial shear test (Demonstration).
- 12. Study of Plate load Test.
- 13. Proctors compaction Test and Proctor needle test.

ND Reade

Sem: IV	Т	otal Hours Distributio	on per week		
Total Credit : 2	l Credit : 2 Lecture (L): 2 Hrs Tutorial/Activity (T/A)		Activity (T/A): 0 Hr.		
Subject Code	BMD4T14	Artificial Neural Networks			
	Exai	nination Scheme	A STATE OF ST		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:		
30 Marks	70 Marks	45 Marks	3 Hours		

Course Objectives

1 To learn intelligence systems and knowledge based systems and networks

	Course Outcomes					
After	r completion of syllabus, students would be able to					
1	Understand and practice python environment and basics of python					
2	Write modular programs using functions and modules					
3	Use feed back and feed forward					
4	Learn to develop civil engineering applications using ANN, associate=ive memor maps.	ry and self organizing				

SYLLABUS

)	Details of Topic		otment of lours	Mapped with CO Number	
		L	T/A	СО	
	Unit 1: Introduction to Artificial Neural Networks				
	Introduction, Artificial Neural Networks, Historical Development of Neural Networks, Biological Neural Networks, Comparison Between them and the Computer, Comparison Between Artificial and Biological Neural Network Basic Building Blocks of Artificial Neural Networks, Artificial Neural Network (ANN) terminologies.	6		1	
	Unit 2: Fundamental Models of Artificial Neural Networks				
	Introduction, McCulloch – Pitts Neuron Model, Learning Rules, Hebbian Learning Rule Perceptron Learning Rule, Delta Learning Rule (Widrow-Hoff Rule or Least Mean Square (LMS) Rule, Competitive Learning Rule, Out Star Learning, Boltzmann Based Learning, Hebb Net. Perceptron Networks: Introduction, Single Layer Perceptron, Brief Introduction to Multilayer Perceptron Networks.	6		2	
-	Unit 3: Networks	10000			
L	Feedback Networks: Introduction, Discrete Hopfiled Net, Continuous	6		3	
	toothe and the bade we	Sv	mge	Allan	Ashuh

Hopfiled Net, Relation between BAM and Hopfiled Nets.			
Feed Forward Networks: Introduction, Back Propagation Network (BPN),			1.1.1
Radial Basis Function Network (RBFN).			
Unit 4: Associative Memory Networks			
Introduction, Algorithms for Pattern Association, Hetero Associative Memory	6	10000000	4
Neural Networks, Auto Associative Memory Network, Bi- directional		12.23	
Associative Memory. Self Organizing Feature Map: Introduction, Methods			
Used for Determining the Winner, Kohonen Self Organizing Feature Maps			

Text/Reference Books:

1. Simon Haykin, "Neural networks A comprehensive foundations", 2nd ed., Pearson Education, 2004.

 B Yegnanarayana, "Artificial neural networks", 1st ed., Prentice Hall of India P Ltd, 2005.
 Li Min Fu, "Neural networks in Computer intelligence", 1st ed., TMH, 2003. leade wohange fahren

. 0. 11

Sem: IV	T	otal Hours Distribution	per week			
Total Credit : 2	Lecture (L): 2 Hrs	Tutorial/Activity (T/A): 0 Hr.				
Subject Code	BOE4T02	Open Elective - II				
	Exar	nination Scheme				
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
30 Marks	70 Marks	45 Marks	3 Hours			

NOTE: For BOE4T02, refer OE Basket other than OE offered by Civil Engg Board

Contro quitter

Alver bade

Sem: IV	Total Hours Distribution per week			
Total Credit : 2	Lecture (L): 2 Hrs	Tutorial/A	Activity (T/A): 0 Hr.	
Subject Code	BHM4T02	Construction Planning and Management		
	Exar	nination Scheme		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:	
30 Marks	70 Marks	45 Marks	3 Hours	

	Course Objectives
1	To provide engineering students with a foundational understanding of Construction Planning and Management

	Course Outcomes
After	completion of syllabus, students would be able to
1	To understand the role of stakeholders in construction management & economy
2	To understand the job layout labour wages ,accidents & safety measure in construction
3	To understand the methods of network techniques such as Critical Pathe Method (CPM), Cost optimization in CPM and to updating for construction and management.
4	To understand Resources planning, allocation and scheduling and Programme Evaluation And Review Technique (PERT)

SYLLABUS

0	Details of Topic		otment of ours	Mapped with CO Number
		L	T/A	CO
	Unit 1			
	CONSTRUCTION MANAGEMENT AND ECONOMY	6		
	Need for construction management, Scope of construction management.			
	Aspect of construction management, PHASES of project or construction			data di kapa di
	management, Engineer and construction economy Contractor and	1.5.6		
	construction economy, Construction cost, Cost control records, Cost index or			
	price index, Construction cost control, Planning the project, Financing the		NGL PAR	1
	project, Project Management Triangle, Project management activities, Stages			
	in construction, Work breakdown structure.			
	MANAGERIAL ORGANIZATION			
	Levels of management, Functions of management, Qualities of a good			14
	entrepreneur, Construction project Manager, Characteristics of a good		r	
Æ	the beade working and with the full	Ż	arte	

manager, Qualifications of an administrator, Conditions essential for carrying on business, Meaning of organization, Forms of business organization, Principles of organization, Systems of staff organization, Organization of a construction company, Office management, Personnel management, Office discipline.			
Unit 2			
JOB LAYOUT AND PROJECT SUPERVISION	6		
Job layout, General principles for Job layout, Factors governing Job layout,			
Advantages of Job layout, Preparation of Job layout, Project supervision,			
Project control, Project evaluation, Construction camp			
CONSTRUCTION ACCIDENTS AND SAFETY MEASURES			
Importance of Safety in Construction Projects, Causes of construction			
accidents, Classification of construction accidents, Injury-frequency rate,			
Injury-severity rate, Injury-index, Equivalent time charge, Compensation			
insurance, Accident cost, Safety programme in construction projects, Rules			
for preventing construction accidents, Safety Precautions for Different Items			
of Construction, Safety Precautions For Foundation and Excavation, Safety		2	
Precautions For Brickwork, Concrete Work, Concrete Work in Cold Weather,		_	
Concrete Work in Hot Weather, Form Work, Scaffolding, Shoring,			
Underpinning, Steel Structures, Construction of Multi-Storeyed Buildings, hot			
Bituminous Work, Demolition work, Storage of Materials, Tunnel			
Construction.			
CONSTRUCTION LABOUR			
Immobility of labour, Theories of wages, Nominal wages and real wages,			
Psychic income, Systems of wage payments, Incentive plans, Group incentive			
plans, Payment by result, Profit-sharing, Morale Measurement of moral, Trade unions, Labour welfare, Indian labour			
Unit 3			
CONVENTIONAL METHODS OF MANAGEMENT TECHNIQUES	6		
Gantt or Bar charts, Mile-Stone Charts, Line of Balance (Lob) Technique	Ŭ		
INTRODUCTION TO NETWORK TECHNIQUES			
Features of network planning, Elements of Network Diagram, Rules for			
Preparing Network Diagram Rules for network diagram, Fulkerson's Rule for			
Numbering the Events, Types of Network Diagram, Arrow diagram or			
Activity-On-Arrow (AOA) diagram, Circle diagram or Activity-On-Node			
(AON) diagram, Typical problems on network diagram.			
NETWORK TECHNIQUES: CRITICAL PATH METHOD (CPM)	East Starting	3	
Introduction of CPM, Uses of CPM, Advantages of CPM, Application of			
CPM in project management for determining extension of time, Difficulties in			
implementation of the CPM, Activity Duration Time (t), Earliest occurrence			
time (TE) for event, Latest occurrence time (TL) for event, Start and Finish			
Times for activity.			
FLOATS: Significance of floats, Critical path and scheduling, typical			
problems on critical path method (CPM)			
COST OPTIMIZATION IN CRITICAL PATH METHOD (CPM)			
Cade paramye and the first	*f	where we are a second second	Ashuha

Utility data with respect to time and cost, Project cost, Cost-time optimization Cost slope, Cost Optimization by crashing, Time-grid diagram, Typical problems on cost optimization. UPDATING NETWORK DIAGRAM FOR CPM CONSTRUCTION		
PLANNING AND MANAGEMENT DETAILED CONTENTS		
Necessity of Updating, Steps for Updating, Typical Problems on Updating Network Diagram for CPM		
Unit 4		
RESOURCES PLANNING, ALLOCATION AND SCHEDULING	6	4
Resources planning, Resources allocation, Resource scheduling, typical problems on resources planning, allocation and scheduling PROGRAMME EVALUATION AND REVIEW TECHNIQUE (PERT)		
Programme Evaluation and Review Technique (PERT), Terminology Used in PERT, Percentage of probability, Implementing PERT, PERT network scheduling, Slacks of events, Negative slack and negative float, Typical problems on PERT, Selection of technique		

Text/Reference Books:

1. Construction Planning and Management by K.S. Rangwala Charotar Publishing

de vonange

Sem: IV	Total Hours Distribution per week			
Total Credit: 2 Lecture	Lecture (L): 2 Hrs	Tutorial/Activity (T/A): 0 Hr. Environmental Science		
Subject Code	BVE4T02			
	Exar	nination Scheme		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:	
30 Marks	70 Marks	45 Marks	3 Hours	

	Course Objectives
1	To understand the fundamentals of environmental science and its relevance in civil engineering.
2	To introduce concepts of sustainable development
3	To study water resource management.
4	To create awareness of environmental laws and policies.

	Course Outcomes
After	completion of syllabus, students would be able to
1	Understand the fundamentals of environmental science
2	Apply sustainable development principles in civil engineering
3	Demonstrate knowledge of water resource management
4	Interpret environmental laws and policies

SYLLABUS

Details of Topic		otment of ours	Mapped with CO Number	
	L	T/A	CO	
Unit I: Introduction to Environmental Science	6	-	1	
 Definition, Scope, and Importance Components of Environment: Atmosphere, Hydrosphere, Lithosphere, and Biosphere Role of Civil Engineers in Environmental Protection Man-Environment Relationship and Need for Sustainability 				
Unit II: Sustainable Development	6	-	2	

Cade Norway Ettelling of

Anthe John

 Concept of Sustainable Development in Civil Engineering Green Building Concepts, LEED Certification Solid and Hazardous Waste Management: Collection, Treatment, and Disposal Environmental Impact Assessment (EIA): Methods and Case Studies Life Cycle Assessment (LCA) in Civil Engineering 			
Unit III: Water Resource Management	6	-	3
Sources of Water: Surface and Groundwater			
 Rainwater Harvesting and Watershed Management 			
Wastewater Treatment Technologies: Primary, Secondary & Tertiary Treatment			
Unit IV: Environmental Policies, Laws & Regulations	6	-	4
Environmental Protection Act, 1986			
• Water (Prevention and Control of Pollution) Act, 1974			
• Air (Prevention and Control of Pollution) Act, 1981			
Role of Pollution Control Boards			
 International Agreements: Kyoto Protocol, Paris Agreement 			

Text/Reference Books:

- 1. "Environmental Science and Engineering" Suresh K. Dhameja
- 2. "Environmental Engineering" Peavy, Rowe, and Tchobanoglous
- 3. "Environmental Studies" R. Rajagopalan
- 4. "Waste Management and Environmental Sustainability" S. Ramachandra Rao
- 5. "Introduction to Environmental Engineering" Mackenzie L. Davis and David A. Cornwell

Online Learning Platform:

1. NPTEL (National Programme on Technology Enhanced Learning) Website: https://nptel.ac.in

2. SWAYAM (Study Webs of Active Learning for Young Aspiring Minds) Website: https://swayam.gov.in

Pan

hul

the

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

B. Tech. CIVIL ENGINEERING

Sem: IV	Total Hours Distribution per week			
Total Credit: 2	Practical (P): 4 Hrs.			
Course Code	BVS4P02	Building Design and Drawing Lab		
	Examinati	on Scheme- Practical		
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:	
50 Marks	50 Marks	50 Marks		

Practical Course Objectives			
1	To impart basic knowledge and skills of drafting software AUTOCAD (2D)		
2	To impart knowledge of basic principles of building planning.		

	Practical Course Outcomes	
	After completion of the practical course, students would be able to	
1	Sketch various components of a building using basic commands of AutoCAD.	
2	Paraphrase basic principles of planning of a building.	
3	Draft submission drawings of single-storied and multi-storied buildings using AutoCAD.	

List of Practical

Pr. No.	List of Practical	Mapped with CO
1	Introduction to AutoCAD (2D) drafting software and its basic commands.	C01
2	Exercise on Draw, Modify, Annotation and Layer tool bars.	C01
3	Drafting of Brick masonry bonds and section through wall using AutoCAD.	C01
4	Drawing of building components like stair, staircase, doors, and Windows using AutoCAD.	C01
5	Study of Principles of Building Planning and Building bye Laws (UDCPR).	C02
6	Planning of a single storied residential building with R.C.C. flat roof and drawing of its submission drawing using AutoCAD.	CO2 & CO3
7	Planning of a multi storied residential building with R.C.C. flat roof and drawing of its submission drawing using AutoCAD.	CO2 & CO3
8	Drawing of double line plan, front elevation and section of a multistorey Public Building using AutoCAD.	C03

Text/ Reference Books:

1. Vishnu Priya Singh, "AutoCAD 2019 - Simplest Book for Learning for Engineers and

Designers" ISBN: 978-81-931622-8-6.

- 2. M. G. Shah, C. M. Kale, S. Y. Patki (2012), "Building Drawing with an Integrated Approach to Built Environment", Tata McGraw-Hill Education.
- 3. M. Chakraborti (2017), "Civil Engineering Drawing (including Architectural aspect)", Monojit Chakraborti Publications, Kolkata **Online Learning Platform.**
- 4. National Building Code (NBC 2016)
- 5. Unified Development Control and Promotion Regulations for Maharashtra State (UDCPR January 30, 2025)

Anthe Johnhos

Sem: IV	T	otal Hours Distribution	per week		
Total Credit : 2	Lecture (L): 2 Hrs	Tutorial/Activity (T/A): 0 Hr.			
Subject Code	BOE4T02	Open Elective – II (– II (Environmental Management)		
	Exar	nination Scheme			
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:		
30 Marks	70 Marks	45 Marks	3 Hours		

	Course Objectives
1	To equip individuals with the knowledge of Environmental pollution and its control
2	To understand the fundamentals of Climate change
3	To promote sustainable practices.
4	To create awareness of environmental Conservation

Course Outcomes				
After completion of syllabus, students would be able to				
1	Understand environmental pollution and its control measures.			
2	Acquire knowledge of various environmental challenges			
3	Understand the concept of sustainable development	tire.		
4	Know the role of individuals in environmental protection			

Syllabus			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Unit I: Introduction to Environmental Pollution and Control	6	1417 - 274	1
Introduction to Pollution: Air, Water, Land, and Noise – Causes, Effects, and Control Measures Plastic Pollution: Causes, Effects, and Control Measures Municipal Solid Waste: Definition, Composition, Effects and Control Measures Electronic Waste: Definition, Composition, Effects and Control Measures			
Unit II: Climate Change and Environmental Challenges	6	-	2
Bade Duange and with Al-			

Johnho

Global Warming and the Greenhouse Effect – Causes, Consequences, and Mitigation Strategies			
Ozone Layer Depletion – Causes, Impacts on the Environment and Human			
Health, and Protective Measures			
Acid Rain - Formation, Effects on Ecosystems and Infrastructure, and			
Control Measures			
Nuclear Hazards - Sources, Environmental and Health Risks, and Safety	1		
Regulations			
Unit III: Environmental Sustainability	6	-	3
Overview of Environmental Management and Sustainable Development			
Significance of Sustainable Development - Need, Benefits, and Long-Term			
Impact			
Sustainable Development Goals-Objectives and Global Implications			
Sustainability Practices - The Three "R" Concept of Waste Management,			
Water Conservation, and Energy Conservation	1.1.1		
Carbon Credits: An overview, Purpose, Types and benefits			
Unit IV: Environmental Conservation	6	(199 -) (19	4
Environmental Values and the Impact of Technological Developments on			
Society and the Environment – Positive and Adverse Effects		100	
Contributions to Environmental Conservation - Role of Individuals,		200	
Corporations, and Society		1	
Case Studies:			
Industrial and Chemical Disasters: Bhopal Gas Tragedy			
• Air and Water Pollution: New Delhi's Air Pollution, Ganga River			
Pollution			
 Natural Disasters and Climate Events: Uttarakhand Flash Floods 		7	

Text/Reference Books:

- 1. "Environmental Management" N.K. Uberoi
- 2. "Environmental Science and Engineering" Suresh K. Dhameja
- 3. "Environmental Management: Principles and Practice" John Pallister
- 4. "Introduction to Environmental Management" Mary K. Theodore and Louis Theodore
- 5. "Environmental Management for Sustainable Development" Chris Barrow
- 6. "Environmental Impact Assessment" Larry W. Canter
- 7. "Environmental Management" Bala Krishnamoorthy
- 8. "Industrial Pollution Control and Environmental Management" A.K. Srivastava
- 9. "Waste Management Practices: Municipal, Hazardous, and Industrial" John Pichtel
- 10. "Environmental Laws and Policies in India" Kailash Thakur
- 11. "Climate change and Its Control" Dr. R.N.Patil, Dr. R. M. Dhoble, Dr. A. Bhambhulkar

Online Learning Platform:

1. NPTEL (National Programme on Technology Enhanced Learning)

Website: https://nptel.ac.in Environmental Impact Assessment, Environmental Management, Sustainable Development

- 2. SWAYAM (Study Webs of Active Learning for Young Aspiring Minds)
- Website: https://swayam.gov.in
- 3. Climate Literacy and Energy Awareness Network (CLEAN) Website: https://cleanet.org

n et